专为中小学学生提供优秀笔记

记作业 > 初中学习方法 > 初二方法 > 初二数学期末考试轴对称知识点总结

初二数学期末考试轴对称知识点总结

今天小编想和同学们一起来学习的是关于初二数学期末轴对称知识点总结,希望可以帮助到同学们更好地复习期末考试,下面就让我们一起来学习一下关于初二数学期末轴对称相关重点知识吧。

初二数学期末考试轴对称知识点总结

1 轴对称图形和关于直线对称的两个图形

2 轴对称的性质

轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

线段垂直平分线上的点到线段两个端点的距离相等;

到线段两个端点距离相等的点在这条线段的垂直平分线上。

3 用坐标表示轴对称

点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).。

4 等腰三角形

等腰三角形的两个底角相等;(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

理解:已知等腰三角形的一线就可以推知另两线。

一个三角形的两个相等的角所对的边也相等。(等角对等边)

等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

5 等边三角形的性质和判定

性质:等边三角形的三个内角都相等,都等于60度;

判定:三个角都相等的三角形是等边三角形;

有一个角是60度的等腰三角形是等边三角形;

推论:

1、直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。

2、在三角形中,大角对大边,大边对大角。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

由一个平面图形得到它的轴对称图形叫做轴对称变换。

6 轴对称图形

1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

3、轴对称图形和轴对称的区别与联系

4.轴对称与轴对称图形的性质

① 关于某直线对称的两个图形是全等形。

② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

7 线段的垂直平分线

定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

性质:线段垂直平分线上的点与这条线段的两个端点的距离相等。

判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上。

8 用坐标表示轴对称小结

1、在平面直角坐标系中

①关于x轴对称的点横坐标相等,纵坐标互为相反数;

②关于y轴对称的点横坐标互为相反数,纵坐标相等;

③关于原点对称的点横坐标和纵坐标互为相反数;

④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

⑤关于与直线X=C或Y=C对称的坐标

2、点(x, y)关于x轴对称的点的坐标为(x, -y)

点(x, y)关于y轴对称的点的坐标为(-x, y)

3、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

初二数学期末考试轴对称知识点总结相关文章

1.初二数学轴对称的思维导图

2.初二数学知识点归纳

3.八年级数学知识点整理归纳

4.初二数学辅导资料:轴对称

5.八年级数学知识点总结

6.八年级下册数学知识点整理

7.初二数学上学期期末复习建议

8.初二数学教程视频:轴对称

9.八年级下册数学知识点总结归纳

10.初二数学 轴对称教学视频

【初二数学期末考试轴对称知识点总结合集】相关文章:

1.2023高考数学必考知识点考点总结大全

2.2023高中历史知识点总结大全

3.感恩老师高二作文七篇

4.观察日记四年级作文300字(10篇)

5.游记四年级作文开头与结尾10篇

6.游记四年级上册单元作文500字10篇

7.秋游四年级上册游记作文10篇

8.童年趣事作文350字13篇

《初二数学期末考试轴对称知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

栏目推荐
热点排行
推荐阅读

记作业 Copyright © 2009-2020 记作业 All Rights Reserved  

皖ICP备18020814号-6