今天小编为同学们带来的是关于初三数学的函数、平面几何的知识点总结,不知道同学们在面对函数这一块的学习怎么来了,接下来就让我们一起来学习一下吧,希望可以帮助到有需要的同学。
一、函数、方程、不等式
常用的数学思想方法:
⑴数形结合的思想方法。
⑵待定系数法。
⑶配方法。
⑷联系与转化的思想。
⑸图像的平移变换。
二、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、 等腰梯形同一底上的两个角相等。
11、 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。
12、 圆内接四边形的任何一个外角都等于它的内对角。
13、 同弧或等弧所对的圆周角相等。
14、 弦切角等于它所夹的弧对的圆周角。
15、 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、 全等三角形的对应角相等。
17、 相似三角形的对应角相等。
18、 利用等量代换。
19、 利用代数或三角计算出角的度数相等
20、 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
三、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
⑴、定义、在同一平面内不相交的两条直线平行。
⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。
⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷、平行四边形的对边平行。
⑸、梯形的两底平行。
⑹、三角形(或梯形)的中位线平行与第三边(或两底)
⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵、直角三角形的两直角边互相垂直。
⑶、三角形的两个锐角互余,则第三个内角为直角。
⑷、三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹、三角形(或多边形)一边上的高垂直于这边。
⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻、矩形的两临边互相垂直。
⑼、菱形的对角线互相垂直。
⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾、半圆或直径所对的圆周角是直角。
⑿、圆的切线垂直于过切点的半径。
⒀、相交两圆的连心线垂直于两圆的公共弦。
四、证明线段的比例式或等积式的主要依据和方法
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
初三数学函数几何知识点总结相关文章:
1.初三数学知识点考点归纳总结
2.初中数学函数知识点汇总
3.初中数学知识点总结
4.初二数学一次函数知识点总结
5.初中数学知识点总结归纳
6.初三数学复习计划总结大全
7.六年级数学几何的初步知识知识点总结
8.2020最新初中数学知识点总结
9.2020初中数学知识点总结归纳
10.2020初中数学几何公式定理整理收集
【初三数学函数几何知识点总结合集】相关文章:
文档为doc格式