专为中小学学生提供优秀笔记

记作业 > 高中学习方法 > 高一方法 > 高一数学三大学习策略

高一数学三大学习策略

随着数学内容的逐步深化,部分高中女生数学能力逐渐下降,导致越学越用功,却越学越吃力,那么下面给大家分享一些关于高一数学三大学习策略,希望对大家有所帮助。

高一数学三大学习策略

策略一、明确预习的动力源泉

预习意义基本有三点:1.学会自主学习,培养良好的学习习惯;2.有助了解下一节要学习的知识点,为上课扫除部分知识障碍,建立新旧知识间联系,有利于知识系统化;3.有助于提高听课效果。预习中不懂的问题,上课老师讲解这部分知识时,目标明确,态度积极,注意集中,容易将不懂问题搞懂。

策略二、预习的基本步骤:“读、划、写、查”

1.“读”——先粗读一遍,以领会教材的大意

根据学科特点,然后细读。数学课本可分为概念,规律(包括法则、定理、推论、性质、公式等)、图形、例题、习题等逐条阅读。例如,看例题时要求学生做到①分清解题步骤,指出关键所在;②弄清各步的依据,养成每步必问为什么,步步有依据的习惯;③比较同一节例题的特点,尽量去体会选例意图;④分析例题的解题规范格式,并按例题格式做练习题。

2.“划”——即划层次、划重点

将一节内容划分成几个层次,分别标出序号。对每层中重点用“★”,对重点字、词下面加“。”,对疑难问题旁边加“?”,对各层次间关系用“=”表示等等,划时要有重点,切勿面面俱到,符号太多。

3.“写”——即将自己的看法、体会写在书眉或书边

(1)写段意:每一段在书边上写出段意;(2)写小结:一要概括本书内容,二要反映本节各内容之间的并列与从属关系;(3)例题:在书边说明各主要步骤的依据,在题后空白处用符号或几个字,写出本例特点,体现编者选例意图;(4)变式:对优秀生要求对例题条件、结论变化,由特殊向一般转倾,将有关知识进行横向联系,纵向发展。

4.“查”——即自我检查预习的效果

①合上书本思考下节课老师要讲的内容大意,哪些内容已看懂,哪些内容模糊,哪些内容不懂,需要在什么地方再提高;②对照自学辅导或老师课前拟订的自学提纲,揭露知识的内涵,挖掘知识的本质,沟通知识的联系。简要地用语言能加以表达;③根据课本的练习,做几道具有代表性的习题,检查预习的效果。

策略三、预习的关键是处理几个关系

1.数学学科与其它学科的关系:预习时要花费较多的时间,高中阶段有八-九门课,门门都预习不可能,可选择1-2门薄弱学科进行试点,有一定经验后再全面展开。

2.预习与听课的关系:预习是听课高效的准备,听课能解决预习中不懂的问题,可以巩固需学知识,千万不可认为预习已懂,上课不认真听讲做其他事,浪费课堂宝贵时间,影响学习效果,总之要使预习在听课中发挥最大效益,否则失去预习的作用。

高一数学的六大学习方法

1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了最大的理想。

2.要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

3.对数学学习应抱着二个词——“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”——问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜,因为种什么“因”必能得什么“果”,只要继续努力,持之有恒,最后必能证明您的努力没有白费!

高中数学基本数学思想

1.转化与化归思想:

是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证

2.逻辑划分思想(即分类与整合思想):

是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证

【高一数学三大学习策略合集】相关文章:

1.感恩老师高二作文七篇

2.观察日记四年级作文300字(10篇)

3.游记四年级作文开头与结尾10篇

4.游记四年级上册单元作文500字10篇

5.秋游四年级上册游记作文10篇

6.童年趣事作文350字13篇

7.春游为主题的游记四年级作文

8.四年级游记作文400字10篇

《高一数学三大学习策略.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

栏目推荐
热点排行
推荐阅读

记作业 Copyright © 2009-2020 记作业 All Rights Reserved  

皖ICP备18020814号-6