脚踏实地,心无旁骛,珍惜分分秒秒。紧跟老师,夯实基础。自己的青春自己奋斗,自己的人生自己作主。决战高考,改变命运。屡挫屡战,笑傲群雄。下面是小编给大家带来的高三数学学考知识点总结,希望能帮助到你!
高三数学学考知识点总结1
1、直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
2、直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3、直线方程
点斜式:
直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
高三数学学考知识点总结2
随机抽样
简介
(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;
优点:操作简便易行
缺点:总体过大不易实行
方法
(1)抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)
(2)随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
分层抽样
简介
分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。
定义
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
整群抽样
定义
什么是整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
优缺点
整群抽样的优点是实施方便、节省经费;
整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
实施步骤
先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:
一、确定分群的标注
二、总体(N)分成若干个互不重叠的部分,每个部分为一群。
三、据各样本量,确定应该抽取的群数。
四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。
例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。
与分层抽样的区别
整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。
分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;
分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。
系统抽样
定义
当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
步骤
一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:
(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;
(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;
(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。
+-
高三数学学考知识点总结3
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
【高三数学学考知识点总结合集】相关文章:
文档为doc格式