专为中小学学生提供优秀笔记

记作业 > 初中学习方法 > 初二方法 > 八年级北师大版数学知识点

八年级北师大版数学知识点

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四总结

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

初二下册数学知识点归纳北师大版

第一章分式

1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二数学三角形知识点归纳

【直角三角形】

◆备考兵法

1.正确区分勾股定理与其逆定理,掌握常用的勾股数.

2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.

3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.

4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.

5.折叠问题是新中考热点之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间想象力,注意折叠过程中,线段,角发生的变化,寻找破题思路.

【三角形的重心】

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:

1.重心和三角形3个顶点组成的3个三角形面积相等。

2.重心到三角形3个顶点距离的平方和最小。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3

4重心到顶点的距离与重心到对边中点的距离之比为2:1。

5.重心是三角形内到三边距离之积的点。

如果用塞瓦定理证,则极易证三条中线交于一点。


八年级数学知识点北师大版相关文章

【八年级北师大版数学知识点合集】相关文章:

1.五年级下册第三单元他_了作文500字【精选4篇】

2.2023高考数学必考知识点考点总结大全

3.2023高中历史知识点总结大全

4.感恩老师高二作文七篇

5.观察日记四年级作文300字(10篇)

6.游记四年级作文开头与结尾10篇

7.游记四年级上册单元作文500字10篇

8.秋游四年级上册游记作文10篇

《八年级北师大版数学知识点.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

栏目推荐
热点排行
推荐阅读

记作业 Copyright © 2009-2020 记作业 All Rights Reserved  

皖ICP备18020814号-6